Learnlets

Secondary

Clark Quinn’s Learnings about Learning

Setting Story

27 May 2014 by Clark Leave a Comment

I’ve been thinking about the deep challenge of motivating uninterested learners.  To me, at least part of that is making the learning of intrinsic interest.  And one of those elements is practice, and this is arguably the most important element to making learning work.  So how to do we make practice intrinsically interesting?

One of the challenging but important components of designing meaningful practice is choosing a context in which that practice is situated.  It’s really about finding a story line that makes the action meaningful to both the learner and the learning. It’s creative (and consequently fun), but it’s also not intrinsically obvious (which I’ve learned after trying to teach it in both game design and advanced ID workshops). There are heuristics to be followed (there’s no guaranteed formula except brainstorm, winnow, trial, and refine), however, that can be useful.

While Subject Matter Experts (SMEs) can be the bane of your existence while setting learning goals (they have conscious access to no more than 30% of what they do, so they tend to end up reciting what they know, which they do have access to),  they can be very useful when creating stories. There’s a reason why they’ve spent the requisite time to  become experts in the field, and that’s an aspect we can tap into. Find out  why it’s of interest to them.  In one instance, when asking experts about computer auditing, a colleague found that auditors found it like playing detective, tracking back to find the error.  It’s that sort of insight upon which a good game or practice exercise can hinge.

One of the tricks to work with SMEs is to talk about decisions.  I argue that what is most likely to make a difference to organizations is that people make better decisions, and I also believe that using the language of decisions helps SMEs focus on what they  do, not what they know.  Between your performance gap analysis of the situation, and expert insight into what decisions are key, you’re likely to find the key performances you want learners to practice.

You also want to find out all the ways learners go wrong.  Here you may well hear instructors and/or SMEs say “no matter what we do, they always…”. And that’s the things you want to know, because novices don’t tend to make random errors.  Yes, there’s some, owing to our cognitive architecture (it’s adaptive), which is why it’s bad to expect people to do rote things, but it’s a small fraction of mistakes.  Instead, learners make patterned mistakes based upon mistakes in their conceptualizations of the performance, aka misconceptions.  And  you want to trap those because you’ll have a chance to remediate them in the learning context. And they make the challenge more appropriately tuned.

You also need the consequences of both the right choice and the misconceptions. Even if it’s just a multiple choice question, you should show what the real world consequence is before providing the feedback about why it’s wrong. It’s also the key element in scenarios, and building models for serious games.

Then the  trick is to ask SMEs about all the different settings in which these decisions embed. Such decisions tend to travel in packs, which is why scenarios are better practice than simple multiple choice, just as scenario-based multiple choice trumps knowledge test.  Regardless, you want to contextualize those decisions, and knowing the different settings that  can be used gives you a greater palette to choose from.

Finally, you’ll want to decide how close you want the context to be to the real context.  For certain high-stakes and well-defined tasks, like flying planes or surgery, you’ll want them quite close to the real situation.  In other situations, where there’s more broad applicability and less intrinsic interest (perhaps accounting or project management), you may want a more fantastic setting that facilitates broader transfer.

Exaggeration is a key element. Knowing what to exaggerate and when is not yet a science, but the rule of thumb is leave the core decisions to be based upon the important variables, but the context can be raised to increase the importance.  For example, accounting might not be riveting but your job depends on it.  Raising the importance of the accounting decision in the learning experience will mimic the importance, so you might be accounting for a mob boss who’ll terminate your existence if you don’t terminate the discrepancy in his accounts!  Sometimes exaggeration can serve a pedagogical purpose as well, such as highlighting certain decisions that are rare in real life but really important when they occur. In one instance, we had asthma show up with a 50% frequency instead of the usual ~15%, as the respiratory complications that could occur required specific approaches to address.

Ultimately, you want to choose a setting in which to embed the decisions. Just making it abstract decreases the impact of the learning, and making it about knowledge, not decisions, will render it almost useless, except for those rare bits of knowledge that have to absolutely be in the head.  You want to be making decisions using models, not recalling specific facts. Facts are better off put in the world for reference, except where time is too critical. And that’s more rare than you’d expect.

This may seem like a lot of work, but it’s not that hard, with practice.  And the above is for critical decisions. In many cases, a good designer should be able to look at some content and infer what the  decisions involved  should be.  It’s a different design approach then transforming knowledge into tests, but it’s critical for learning.  Start working on your practice items first, aligned with meaningful objects, and the rest will flow. That’s my claim, what say you?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Clark Quinn

The Company

Search

Feedblitz (email) signup

Never miss a post
Your email address:*
Please wait...
Please enter all required fields Click to hide
Correct invalid entries Click to hide

Pages

  • About Learnlets and Quinnovation

The Serious eLearning Manifesto

Manifesto badge

Categories

  • design
  • games
  • meta-learning
  • mindmap
  • mobile
  • social
  • strategy
  • technology
  • Uncategorized
  • virtual worlds

License

Previous Posts

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013
  • July 2013
  • June 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011
  • November 2011
  • October 2011
  • September 2011
  • August 2011
  • July 2011
  • June 2011
  • May 2011
  • April 2011
  • March 2011
  • February 2011
  • January 2011
  • December 2010
  • November 2010
  • October 2010
  • September 2010
  • August 2010
  • July 2010
  • June 2010
  • May 2010
  • April 2010
  • March 2010
  • February 2010
  • January 2010
  • December 2009
  • November 2009
  • October 2009
  • September 2009
  • August 2009
  • July 2009
  • June 2009
  • May 2009
  • April 2009
  • March 2009
  • February 2009
  • January 2009
  • December 2008
  • November 2008
  • October 2008
  • September 2008
  • August 2008
  • July 2008
  • June 2008
  • May 2008
  • April 2008
  • March 2008
  • February 2008
  • January 2008
  • December 2007
  • November 2007
  • October 2007
  • September 2007
  • August 2007
  • July 2007
  • June 2007
  • May 2007
  • April 2007
  • March 2007
  • February 2007
  • January 2007
  • December 2006
  • November 2006
  • October 2006
  • September 2006
  • August 2006
  • July 2006
  • June 2006
  • May 2006
  • April 2006
  • March 2006
  • February 2006
  • January 2006

Amazon Affiliate

Required to announce that, as an Amazon Associate, I earn from qualifying purchases. Mostly book links. Full disclosure.

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok