Learnlets

Secondary

Clark Quinn’s Learnings about Learning

Better Learning in the Real World

24 September 2014 by Clark 3 Comments

I tout the value of learning science and good design.  And yet, I also recognize that to do it to the full extent is beyond most people’s abilities.  In my own work, I’m not resourced to do it the way I would and should do it. So how  can we strike a balance?  I believe that we need to use  smart heuristics instead of the full process.

I have been  talking to a few  different people recently who basically  are resourced to do it the right way.  They talk about getting the  right  SMEs (e.g. with sufficient depth to develop models), using a cognitive task analysis process to get the objectives, align the processing activities to the type of learning objective, developing appropriate materials and rich simulations, testing the learning  and using  feedback to refine the product, all before final release.  That’s great, and I laud them.  Unfortunately, the cost to get a team capable of doing this, and the time schedule to do it right, doesn’t fit in the situation I’m usually in (nor most of  you).  To be fair, if it really matters (e.g. lives depend on it or you’re going to sell it), you really do need to do this (as medical, aviation, military training usually do).

But what if you’ve a team that’s not composed of PhDs in the learning sciences, your development resources are tied to the usual tools, your budgets far more stringent, and schedules are likewise constrained? Do you have to abandon hope?  My claim is no.

Law of diminishing returns curveI believe that a smart, heuristic approach is plausible.  Using  the typical ‘law of diminishing returns’ curve (and the shape of this curve is open to debate), I  suggest that it’s plausible that there is a sweet spot of design processes that gives you an high amount of value for a pragmatic investment of time and resources.  Conceptually, I believe you can get good outcomes with some steps that tap into the core of learning science without following the letter.  Learning is a probabilistic game, overall, so we’re taking a small tradeoff in probability to meet real world constraints.

What are these steps? Instead of doing a full cognitive task analysis, we’ll do our best guess of meaningful activities before getting feedback from the SME.  We’ll switch the emphasis from knowledge test to mini- and branching-scenarios for practice tasks, or we’ll have them take information resources and use them to generate work products (charts, tables, analyses) as processing.  We’ll try to anticipate the models,  and ask for misconceptions & stories to build in.    And we’ll align pre-, in-, and post-class activities in a pragmatic way.  Finally,  we’ll do a learning equivalent of heuristic evaluation, not do a full scientifically valid test, but we’ll run it by the SMEs and fix their (legitimate) complaints, then run  it with  some students and fix the observed  flaws.

In short, what we’re doing here are   approximations to the full process that includes some smart guesses instead of full validation.  There’s not the expectation that the outcome will be as good as we’d like, but it’s going to be a lot better than throwing quizzes on content. And we can do it with a smart team that aren’t learning scientists  but are informed, in a longer but still reasonable schedule.

I believe we can create transformative learning under real world constraints.  At least, I’ll claim this approach is far more justifiable than the too oft-seen approach of info dump and knowledge test. What say you?

Comments

  1. Dick Carlson says

    24 September 2014 at 11:59 AM

    In my experience, 50% of the people I’ve worked with don’t even have coherent learning objectives. Of those, 80% don’t have any kind of meaningful measurement system to see if their objectives were met. So I think your chart is probably pretty close to reality.

    “Some good” is better than “none good”.

  2. tyelmene says

    26 September 2014 at 7:00 AM

    If you are stuck in an instructional/push construct, it’s very likely that a cost v. benefit over time ratio will be very close to how you’ve asserted it here. However, the results might be better if you simply open your mindset to include self-directed ‘learning’ by learners who ‘pull’ information from multiple sources including your SMEs for their own learning process. Where this has been tried in other domains, the results have been strikingly impressive.

  3. Ben Price says

    29 September 2014 at 3:56 AM

    Hi Clark,

    I’ll touch on two elements – the diagnosis of the problem and the application of evidence based instructional design methods (both of which I regularly debate with my colleagues, apologies if the following reads like half a rant…).

    First, my experience is a rigorous and deep analysis of the problem takes a lot of time and money. It’s one thing to talk to stakeholders, perhaps complete a fishbone diagram and delve into an issue. It’s another to collect data sets (that’s when it’s available), use complex statistical methods, test findings, understand relationships, etc. (I think the evolution of big data and analytics will improve this). Unless it’s a matter between life and death, I’ll assess the information on hand and facilitate an approximation followed by iterations. This method regularly surpasses the business metrics I’m aiming for. The organisations I work with change rapidly, by the time a ‘clinical’ diagnoses is performed the situation has changed.

    Second, I believe instructional designers need a solid understanding of the science of how people learn. Good books are out there, as are smart enthusiastic and qualified people who passionately want to change the state of play. I regularly cross paths with experience instructional designers very much wedded to the dreaded learning styles, content dumps and poor assessments.

    So, can we create transformative learning under real world constraints? My strong view is yes, with the right people and right techniques.

    Ben

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Clark Quinn

The Company

Search

Feedblitz (email) signup

Never miss a post
Your email address:*
Please wait...
Please enter all required fields Click to hide
Correct invalid entries Click to hide

Pages

  • About Learnlets and Quinnovation

The Serious eLearning Manifesto

Manifesto badge

Categories

  • design
  • games
  • meta-learning
  • mindmap
  • mobile
  • social
  • strategy
  • technology
  • Uncategorized
  • virtual worlds

Blogroll

  • Charles Jennings
  • Christy Tucker
  • Connie Malamed
  • Dave's Whiteboard
  • Donald Clark's Plan B
  • Donald Taylor
  • Harold Jarche
  • Julie Dirksen
  • Kevin Thorn
  • Mark Britz
  • Mirjam Neelen & Paul Kirschner
  • Stephen Downes' Half an Hour

License

Previous Posts

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013
  • July 2013
  • June 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011
  • November 2011
  • October 2011
  • September 2011
  • August 2011
  • July 2011
  • June 2011
  • May 2011
  • April 2011
  • March 2011
  • February 2011
  • January 2011
  • December 2010
  • November 2010
  • October 2010
  • September 2010
  • August 2010
  • July 2010
  • June 2010
  • May 2010
  • April 2010
  • March 2010
  • February 2010
  • January 2010
  • December 2009
  • November 2009
  • October 2009
  • September 2009
  • August 2009
  • July 2009
  • June 2009
  • May 2009
  • April 2009
  • March 2009
  • February 2009
  • January 2009
  • December 2008
  • November 2008
  • October 2008
  • September 2008
  • August 2008
  • July 2008
  • June 2008
  • May 2008
  • April 2008
  • March 2008
  • February 2008
  • January 2008
  • December 2007
  • November 2007
  • October 2007
  • September 2007
  • August 2007
  • July 2007
  • June 2007
  • May 2007
  • April 2007
  • March 2007
  • February 2007
  • January 2007
  • December 2006
  • November 2006
  • October 2006
  • September 2006
  • August 2006
  • July 2006
  • June 2006
  • May 2006
  • April 2006
  • March 2006
  • February 2006
  • January 2006

Amazon Affiliate

Required to announce that, as an Amazon Associate, I earn from qualifying purchases. Mostly book links. Full disclosure.