Learnlets

Secondary

Clark Quinn’s Learnings about Learning

#AECT17 Reflections

15 November 2017 by Clark Leave a Comment

Ok, so I was an academic for a brief and remarkably good period of time (a long time ago). Mind you, I’ve kept my hand in: reviewing journal and conference submissions, writing the occasional book chapter, contributing to some research, even playing a small role in some grant-funded projects.  I like academics, it’s just that circumstances took me away (and I like consulting too; different, not one better). However, there’re a lot of benefits from being engaged, particularly keeping up with the state of the art. At least one perspective… Hence, I attended the most recent meeting of the Association of Educational Communications & Technology, pretty much the society for academics in instructional technology.

The event features many of your typical components: keynotes, sessions, receptions, and the interstitial social connections. One of the differences is that there’s no vendor exhibition. And there are a lot of concurrent sessions: roughly 27 per time slot!    Now, you have to understand, there are multiple agendas, including giving students and new faculty members opportunities for presentations and feedback. There are also sessions designed for tapping into the wisdom of the elders, and working sessions to progress understandings. This was only my second, so I may have the overall tenor wrong.  Regardless, here are some reflections from the event:

For one, it’s clear that there’s an overall awareness of what could, and should, be happening in education. In the keynotes, the speakers repeatedly conveyed messages about effective learning. What wasn‘t effectively addressed was the comprehensive resistance of the education system to meaningful change.  Still, all three keynotes, Driscoll, Cabrera, and Reeves, commented in one way or another on problems and opportunities in education. Given that many of the faculty members come from Departments of Education, this is understandable.

Another repeated emergent theme (at least for me) was the need for meaningful research. What was expressed by Tom Reeves in a separate session was the need for a new approach to research grounded in focusing on real problems. I’ve been a fan of his call for Design-Based Research, and liked what he said: all thesis students should introduce their topics with the statement “the problem I’m looking at is”. The sessions, however, seemed to include too many small studies. (In my most cynical moments, I wonder how many studies have looked at teaching students or teacher professional development and their reflections/use of technology…).

One session I attended was quite exciting. The topic was the use of neuroscience in learning, and the panel were all people using scans and other neuroscience data to inform learning design. While I generally deride the hype that usually accompanies the topic, here were real researchers talking actual data and the implications, e.g. for dyslexia.  While most of the results from research that have implications for design are still are at the cognitive level, it’s important to continue to push the boundaries.

I focused my attendance mostly on the Organizational Training & Performance group, and heard a couple of good talks.  One was a nice survey of mentoring, looking across the research, and identifying what results there were, and where there were still opportunities for research. Another study did a nice job of synthesizing models for human performance technology, though the subsequent validation approach concerned me.

I did a couple of presentations myself that I’ll summarize in tomorrow’s post, but it was a valuable experience. The challenges are different than in corporate learning technology, but there are interesting outcomes that are worth tracking.  A valuable experience.

Tom Reeves AECT Keynote Mindmap

10 November 2017 by Clark 1 Comment

Thomas Reeves opened the third day of the AECT conference with an engaging keynote that used the value of conation to drive the argument for Authentic Learning. Conation is the component of cognition that consists of your intent to learn, and is under-considered. Authentic learning is very much collaborative problem-solving. He used the challenges from robots/AI to motivate the argument.

Mindmap

Two good books on learning

6 October 2017 by Clark 1 Comment

In addition to the existing good books out there (Julie Dirksen’s Design for How People Learn, Patti Schank’s new series, e.g. her book on Practice & Feedback, &  Brown, et al’s Make it Stick), I was pointed to two others. One I’d heard about but hadn’t gotten to yet, the other was new to me. And now that I’ve finished them, both are worth recommending and adding to your reading list.

Benedict Carey’s  How We Learn  is an accessible overview of the science of learning. As a journalist (not a scientist), he documents his own unlikely journey as a learner, and how that matches up with what’s known. His idiosyncratic study habits, he discovers, are actually not that far off from what really does work for learning (as opposed to passing tests, and that’s an important distinction).  He includes practical implications and maintains a motivating style to help others to put the practice advice to work. His point, it’s what you do as much as how.

This is a book to give to learners to help them understand themselves as learners. The colloquial style and personal anecdotes make the messages comprehensible and relevant. The book includes a full suite of advice about how to learn best.  While it may be hard to convince learners to read a book on learning, this may well be the most valuable investment they can make.

On the other hand, Anders Ericsson’s Peak is very much the translated (co-authored by Robert Pool, a journalist) science book. It’s full of revelations, but laid out with scientific experiments to complement a very thorough set of case studies. What it does beautifully is unmask the myth of ‘native talent’ and unpack the details that lead to expertise. And those details, specifically are about  deliberate practice.  

Most importantly, in my mind, is the summary that points out that our focus should not be so much on expert performance but instead on helping so many achieve meaningful levels of ability that they’ve been turned off to by bad stories.  Too often people will say “I can’t do math” and instead such abilities can be developed wonderfully. This book, while relevant to individuals, has much more insight to provide for learning designers.  It separates out  why you want models like  activity-based learning.  And why what we do too often in classrooms and online aren’t helpful.

I’d put these near the top of my recommended reading lists.

So I was, at least partly, wrong

5 October 2017 by Clark 2 Comments

A number of years ago, I wrote that pre-testing learners was user abusive (with a caveat). My argument was sensible, qualified, but apparently wrong. Now that I’ve more of the story, it’s time to rectify my mistake. Of course, there are still remaining questions ;).

My claim was that while pre-testing might have some small benefit, forcing users to test on things they don’t know isn’t nice.  Moreover, I attributed that benefit to activating relevant material, and suggested that there were more humane ways to do it. However, if the pre-test could show that learners  did know it, and so be able to skip it, it’d be worthwhile.

However, research has now shown more benefits to pre-testing. That is, causing learners to search for information they don’t have somehow makes the memory traces more susceptible to successful learning subsequently.  Without a full neurological explanation, it appears that the activation goes deeper than just associative awakening. It also appears to be for more than just memory, but actual performance.

This, then, argues that pre-testing  is a good thing. Now, I haven’t been able to find a comparison where this pre-testing was compared to a compelling story or question that didn’t require an actual response. Still, I’m willing to believe that the actual requirement for search in a test is more powerful than mere related stories.

And this also makes the case stronger, in my mind, for problem-based learning. That is, if you’re faced with a problem you don’t know the answer to (and it’s a comprehensive question representing the overall learning goal), both the need to look for the answer and (ideally) a compelling story in which it’s important make a good case for the learning to be more effective.

Which doesn’t mean I don’t still feel it’s abusive, but it’s in a good cause.  And it still could be that the learner doesn’t actually have to take a ‘test’, but instead in some less formal way is asked to retrieve the answer.  And it might not.

Regardless, I feel obligated to change my opinion when data contravenes, even in part, a story I previously believed. And it doesn’t even hurt much ;).  Here’s to good design!

Extending Engagement

24 August 2017 by Clark 1 Comment

My post on why ‘engagement’ should be added to effective and efficient led to some discussion on LinkedIn. In particular, some questions were asked that I thought I should reflect on.  So here are my responses to the issue of how to ‘monetize’ engagement, and how it relates to the effectiveness of learning.

So the first issue was how to justify the extra investment engagement would entail. It was an assumption that it  would take extra investment, but I believe it will. Here’s why. To make a learning experience engaging, you need some additional things: knowing why this is of interest and  relevance  to practitioners, and putting that into the introduction, examples, and practice.  With practice, that’s going to come with only a marginal overhead. More importantly, that is part of also making it more effective. There  is some additional information needed, and more careful design, and that  certainly is more than most of what’s being done now. (Even if it should be.)

So why would you put in this extra effort?  What are the benefits? As the article suggested, the payoffs are several:

  • First, learners know more intrinsically why they should pay attention. This means they’ll pay more attention, and the learning will be more effective. And that’s valuable, because it should increase the outcomes of the learning.
  • Second, the practice is distributed across more intriguing contexts. This means that the practice will have higher motivation.  When they’re performing, they’re motivated because it  matters. If we have more motivation in the learning practice, it’s closer to the performance context, so we’re making the transfer gap smaller. Again, this will make the learning more effective.
  • Third, that if you unpack the meaningfulness of the examples, you’ll make the underlying thinking easier to assimilate. The examples are comprehended better, and that leads to more effectiveness.

If learning’s a probabilistic game (and it is), and you increase the likelihood of it sticking, you’re increasing the return on your investment. If the margin to do it right is less than the value of the improvement in the learning, that’s a business case. And I’ll suggest that these steps are part of making learning effective,  period. So it’s really going from a low likelihood of transfer – 20-30% say – to effective learning – maybe 70-80%.  Yes, I’m making these numbers up, but…

This is really all part of going from information dump & knowledge test to elaborated examples and contextualized practice.  So that’s really not about engagement, it’s about effectiveness. And a lot of what’s done under the banner of ‘rapid elearning’ is ineffective.  It may be engaging, but it isn’t leading to new skills.

Which is the other issue: a claim that engagement doesn’t equal better learning. And in general I agree (see: activity doesn’t mean effectiveness in a social media tool). It depends on what you mean by engagement; I don’t mean trivialized scores equalling more activity. I mean fundamental cognitive engagement: ‘hard fun’, not just  fun.  Intrinsic relevance. Not marketing flare, but real value add.

Hopefully this helps!  I really want to convince you that you want deep learning design if you care about the outcomes.  (And if you don’t, why are you bothering? ;).  It goes to effectiveness, and requires addressing engagement. I’ll also suggest that while it  does affect efficiency,  it does so in marginal ways compared to substantial increases in impact.  And that strikes me as the type of step one  should be taking. Agreed?

 

3 E’s of Learning: why Engagement

16 August 2017 by Clark 1 Comment

Letter EWhen you’re creating learning experiences, you want to worry about the outcomes, but there’s more to it than that.  I think there are 3 major components for learning as a practical matter, and I lump these under the E’s: Effectiveness, Efficiency, & Engagement. The latter may be more of a stretch, but I’ll make the case .

When you typically talk about learning, you talk about two goals: retention over time, and transfer to all appropriate (and no inappropriate) situations.  That’s learning effectiveness: it’s about ensuring that you achieve the outcomes you need.  To test retention and transfer, you have to measure more than performance at the end of the learning experience. (That is, unless your experience definition naturally includes this feedback as well.) Let alone just asking learners if they  thought it was valuable.  You have to see if the learning has persisted later, and is being used as needed.

However, you don’t have unlimited resources to do this, you need to balance your investment in creating the experience with the impact on the individual and/or organization.  That’s  efficiency. The investment is rewarded with a multiplier on the cost.  This is just good business.

Let’s be clear: investing without evaluating the impact is an act of faith that isn’t scrutable.  Similarly, achieving the outcome at an inappropriate expense isn’t sustainable.  Ultimately, you need to achieve reasonable changes to behavior under a viable expenditure.

A few of us have noticed problems sufficient to advocate quality in what we do.  While things may be trending upward (fingers crossed), I think there’s still ways to go when we’re still hearing about ‘rapid’ elearning instead of ‘outcomes’.  And I’ve argued that the necessary changes produce a cost differential that is marginal, and yet yields outcomes more than marginal.   There’s an obvious case for effectiveness  and efficiency.

But why engagement? Is that necessary? People tout it as desirable. To be fair, most of the time they’re talking about design aesthetics, media embellishment, and even ‘gamification‘ instead of intrinsic engagement.  And I will maintain that there’s a lot more possible. There’s an open question, however: is it worth it?

My answer is yes. Tapping into intrinsic interest has several upsides that are worth the effort.  The good news is that you likely don’t need to achieve a situation where people are willing to pay money to attend your learning. Instead, you have the resources on hand to make this happen.

So, if you make your learning – and here in particular I mean your introductions, examples, and practice – engaging, you’re addressing motivation, anxiety, and potentially optimizing the learning experience.

  • If your introduction helps learners connect to their own desires to be an agent of good, you’re increasing the likelihood that they’ll persist  and  that the learning will ‘stick’.
  • If your examples are stories that illustrate situations the learner recognizes as important, and unpack the thinking that led to success, you’re increasing their comprehension and their knowledge.
  • Most importantly, if your practice tasks are situated in contexts that are meaningful to learners both because they’re real  and important, you’ll be developing their skills in ways closest to how they’ll perform.  And if the challenge in the progression of tasks is right, you’ll also accelerate them at the optimal speed (and increase engagement).

Engagement is a fine-tuning, and learner’s opinions on the experience aren’t the most important thing.  Instead, the improvement in learning outcomes is the rationale.  It takes some understanding and practice to get systematically good at doing this. Further, you can make learning engaging, it is an acquired capability.

So, is your learning engaging intrinsic interest, and making the learning persist? It’s an approach that affects effectiveness in a big way and efficiency in a small way. And that’s the way you want to go, right? Engage!

Simulations versus games

9 August 2017 by Clark Leave a Comment

At the recent Realities 360 conference, I saw some confusion about the difference between a simulation and a game. And while I made some important distinctions in my book on the topic, I realize that it’s possible that it’s time to revisit them. So here I’m talking about some conceptual discriminations that I think are important.

Simulations

As I’ve mentioned, simulations are models of the world. They capture certain relationships we believe to be true about the world. (For that matter, they can represent worlds that aren’t real, certainly the case in games.). They don’t (can’t) capture all the world, but a segment we feel it is important to model. We tend to validate these models by testing them to see if they behave like our real world.  You can also think about simulations as being in a ‘state’ (set of values in variables), and move to others by rules.  Frequently, we include some variability in these models, just as is reflected in the real world. Similarly, these simulations can model considerable complexity.

Such simulations are built out of sets of variables that represent the state of the world, and rules that represent the relationships present. There are several ways things change. Some variables can be changed by rules that act on the basis of time (while countdown timer = on, countdown = countdown -1). Variables can also interact (if countdown=0: if 1 g adamantium and 1 g dilithium, Temperature = Temperature +1000, adamantium = adamantium – 1g, dilithium = dilithium – 1g).  Other changes are based upon learner actions (if learner flips the switch, countdown timer = on).

Note that you may already have a simulation. In business, there may already exist a model of particular processes, particularly if they’re proprietary systems.

From a learning point of view, simulations allow motivated and self-effective learners to explore the relationships they need to understand. However, we can’t always assume motivated and self-effective learners. So we need some additional work to turn a simulation into a learning experience.

Scenarios

One effective way to leverage simulations is to choose an initial state (or ‘space of states’, a start point with some variation), and a state (or set) that constitutes ‘win’. We also typically have states that also represent ‘fail’.  We choose those states so that the learner can’t get to ‘win’ without understanding the necessary relationships.   The learner can try and fail until they discover the necessary relationships.  These start and goal states serve as scaffolding for the learning process.    I call these simulations with start and stop states ‘scenarios’.

This is somewhat complicated by the existence of ‘branching scenarios’. There are initial and goal states and learner actions, but they are  not represented by variable and rules. The relationships in branching scenarios are implicit in the links instead of explicit in the variables and rules. And they’re easier to build!  Still, they don’t have the variability that typically is possible in a simulation. There’s an inflection point (qualitative, not quantitative) where the complexity of controlling the branches renders it more sensible to model the world as a simulation rather than track all the branches.

Games

The problem here is that too often people will build a simulation and call it a game. I once reviewed a journal submission about a ‘game’ where the authors admitted that players thought it was boring. Sorry, then it’s not a game!  The difference between a simulation and a game is a subjective experience of engagement on the part of the player.

So how do you get from a simulation to a game?  It’s about tuning.  It’s about adjusting the frequency of events, and their consequences, such that the challenge moves to fall into the zone between boring and frustrating. Now, for learning, you can’t change the fundamental relationships you’re modeling, but you can adjust items like how quickly events occur, and the importance of being correct. And it takes testing and refinement. Will Wright, a game designers’ game designer, once proposed that tuning is 9/10’s of the work!  Now that’s for a commercial game, but it gives you and idea.

You can also use gamification, scores to add competition, but, please,  only after you first expend the effort to make the game intrinsically interesting. Tap into why they  should care about the experience, and bake that it.

Is it worth it to actually expend effort to make the experience engaging?  I believe that the answer is yes. Perhaps not to the level of a game people will pay $60 to play, but some effort to manifest the innate meaningfulness is worth it. Games minimize the time to obtain competency because they optimize the challenge.  You will have sticks as well as carrots, so you don’t need to put in $M budgets, but do tune until your learners have an engaging and effective experience.

So, does this help? What questions do you still have?

L&D Tuneup

8 August 2017 by Clark Leave a Comment

auto engineIn my youth, owing to my father’s tutelage and my desire for wheels, I learned how to work on cars. While not the master he was, I could rebuild a carburetor, gap points and sparkplugs, as well as adjust the timing. In short, I could do a tuneup on the car.  And I think that’s what Learning & Development (L&D) needs, a tuneup.

Cars have changed, and my mechanic skills are no longer relevant. What used to be done mechanically – adjusting to altitude, adapting through the stages of the engine warming up, and handling acceleration requests – are now done electronically. The air-fuel mixture and the spark advance are under the control of the fuel injection and electronic ignition systems (respectively) now.  With numerous sensors, we can optimize fuel efficiency and performance.

And that’s the thing: L&D is too often still operating in the old, mechanical, model. We have the view of a hierarchical model where a few plan and prepare and train folks to execute. We stick with face-to-face training or maybe elearning, putting everything in the head, when science shows that we often function better from information in the world or even in other people’s heads!  And this old approach no longer works.

As has been noted broadly and frequently, the world is changing faster and the pressure is on organizations to adapt more quickly. With widely disparate paths    pointing in the same direction, it’s easy to see that there’s something fundamental going on. In short, we need to move, as Jon Husband puts it, from hierarchy to wirearchy.  We need agility: experimentation, review, and reflection, iteratively and collectively. And in that move, there’s a central role for L&D.

The move may not be imminent, but it is unavoidable. Even staid and secure organizations are facing the consequences of increasing rates of change and new technology innovations. AI, networks, 3D printing, there are ramifications. Even traditional government agencies are facing change. Yet, this is all about people and learning.

As Harold Jarche tells us, work is learning and learning is the work. That means learning is moving from the classroom to the workplace and on the go. L&D needs a modern workplace learning approach, as Jane Hart lets us know. This new model is one where L&D moves from fount of knowledge to learning facilitator (or advisor, as she terms it).  People need to develop those communication and collaboration, but it won’t come from classes, but from coaching and more.

And, to return to the metaphor, I view this as an L&D tuneup. It’s not about throwing out what you’re doing (unless that’s the fastest path ;), but instead augmenting it. Shifts don’t happen overnight, but instead it means taking on some internal changes, and then working that outwards with stakeholders, reengineering the organizational relationships. It’s a journey, not an event. But like with a tuneup, it’s about figuring out what your new model should be, and then adjusting until you achieve it. It’s over a more extended period of time, but it’s still a tuning operation. You have to work through the stages to a new revolutionary way of working. So, are you ready for a tuneup?

Realities 360 Reflections

1 August 2017 by Clark 1 Comment

So, one of the two things I did last week was attend the eLearning Guild‘s Realities 36o conference.  Ostensibly about Augmented Reality (AR)  and Virtual Reality (VR), it ended up being much more about VR. Which isn’t a bad thing, it’s probably as much a comment on the state of the industry as anything.  However, there were some interesting learnings for me, and I thought I’d share them.

First, I had a very strong visceral exposure to VR. While I’ve played with Cardboard on the iPhone (you can find a collection of resources for Cardboard  here), it’s not quite the same as a full VR experience.  The conference provided a chance to try out apps for the HTC Vive, Sony Playstation VR, and the Oculus.  On the Vive, I tried a game where you shot arrows at attackers.  It was quite fun, but mostly developed some motor skills. On the Oculus, I flew an XWing fighter through an asteroid field and escorted a ship and shoot enemy Tie-fighters.  Again, fun, but mostly about training my motor skills in this environment.

It was the one I think on the Vive that gave me an experience.  In it, you’re floating around the International Space Station. And it was very cool to see the station and experience the immersion of 3D, but it was very uncomfortable.  Partly because I was trying to fly around (instead of using handholds), my viewpoint would fly through the bulkhead doors. However, the positioning meant that it gave the visual clues that my chest was going through the metal edge.  This was extremely disturbing to me!  As I couldn’t control it well, I was doing this continually, and I didn’t like it. Partly it was the control, but it was also the total immersion. And that was impressive!

There are empirical results that demonstrate better learning outcomes for VR, and certainly  I can see that particularly, for tasks inherently 3D. There’s also another key result, as was highlighted in the first keynote: that VR is an ’empathy’ machine. There have been uses for things like understanding the world according to a schizophrenic, and a credit card call center helping employees understand the lives of card-users.

On principle, such environs should support near transfer when designed to closely mimic the actual performance environment. (Think: flight or medicine simulators.)  And the tools are getting better. There’s an app that allows you to take photos of a place to put into Cardboard, and game engines (Unity or Unreal or both) will now let you import AutoCAD models.  There was also a special camera that could sense the distances in a space and automatically generate a model of it.  The point being that it’s getting easier and easier to generate VR environments.

That, I think, is what’s holding AR back.  You can fairly easily use it for marker or location based information, but actually annotating the world visually is still challenging.  I still think AR is of more interest, (maybe just to me), because I see it eventually creating the possibility to see the causes and factors  behind the world, and allow us to understand it better.  I could argue that VR is just extending sims from flat screen to surround, but then I think about the space station, and…I’m still pondering that. Is it revolutionary or just evolutionary?

One session talked about trying to help folks figure out when VR and AR made sense, and this intrigued me. It reminded me that I had tried to characterize the affordances of virtual worlds, and I reckon it’s time to take a stab at doing this for VR and AR.  I believed then that I was able to predict when virtual worlds would continue to find value, and I think results have borne that out.  So, the intent is to try to get on top of when VR and AR make sense.  Stay tuned!

Barry Downes #Realities360 Keynote Mindmap

27 July 2017 by Clark Leave a Comment

Barry Downes talked about the future of the VR market with an interesting exploration of the Immersive platform. Taking us through the Apollo 11 product, he showed what went into it and the emotional impact. He showed a video that talked (somewhat simplistically) about how VR environments could be used for learning. (There is great potential, but it’s not about content.). He finished with an interesting quote about how VR would be able to incorporate any further media. A second part of the quote said:  “Kids will think it’s funny [we] used to stare at glowing rectangles hoping to suspend disbelief.”

VR Keynote

« Previous Page
Next Page »

Clark Quinn

The Company

Search

Feedblitz (email) signup

Never miss a post
Your email address:*
Please wait...
Please enter all required fields Click to hide
Correct invalid entries Click to hide

Pages

  • About Learnlets and Quinnovation

The Serious eLearning Manifesto

Manifesto badge

Categories

  • design
  • games
  • meta-learning
  • mindmap
  • mobile
  • social
  • strategy
  • technology
  • Uncategorized
  • virtual worlds

License

Previous Posts

  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013
  • July 2013
  • June 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011
  • November 2011
  • October 2011
  • September 2011
  • August 2011
  • July 2011
  • June 2011
  • May 2011
  • April 2011
  • March 2011
  • February 2011
  • January 2011
  • December 2010
  • November 2010
  • October 2010
  • September 2010
  • August 2010
  • July 2010
  • June 2010
  • May 2010
  • April 2010
  • March 2010
  • February 2010
  • January 2010
  • December 2009
  • November 2009
  • October 2009
  • September 2009
  • August 2009
  • July 2009
  • June 2009
  • May 2009
  • April 2009
  • March 2009
  • February 2009
  • January 2009
  • December 2008
  • November 2008
  • October 2008
  • September 2008
  • August 2008
  • July 2008
  • June 2008
  • May 2008
  • April 2008
  • March 2008
  • February 2008
  • January 2008
  • December 2007
  • November 2007
  • October 2007
  • September 2007
  • August 2007
  • July 2007
  • June 2007
  • May 2007
  • April 2007
  • March 2007
  • February 2007
  • January 2007
  • December 2006
  • November 2006
  • October 2006
  • September 2006
  • August 2006
  • July 2006
  • June 2006
  • May 2006
  • April 2006
  • March 2006
  • February 2006
  • January 2006

Amazon Affiliate

Required to announce that, as an Amazon Associate, I earn from qualifying purchases. Mostly book links. Full disclosure.

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok