Learnlets

Secondary

Clark Quinn’s Learnings about Learning

Archives for October 2014

Belinda Parmar #DevLearn Keynote Mindmap

31 October 2014 by Clark Leave a Comment

Belinda Parmar addressed the critical question of women in tech in a poignant way, pointing out that the small stuff is important: language, imagery, context. She concluded with small actions including new job description language and better female involvement in product development.

IMG_0156.JPG

Beau Lotto #DevLearn Keynote Mindmap

30 October 2014 by Clark Leave a Comment

Beau Lotto gave a very interesting keynote that built from perceptual phenomena to a lovely message on learning.

IMG_0154.JPG

Neil deGrasse Tyson #DevLearn Keynote Mindmap

29 October 2014 by Clark 1 Comment

Neil deGrasse Tyson opened this year’s DevLearn conference. A clear crowd favorite, folks lined up to get in (despite the huge room). In a engaging, funny, and poignant talk, he made a great case for science and learning.

IMG_0153.JPG

Cognitive prostheses

28 October 2014 by Clark 2 Comments

While our cognitive architecture has incredible capabilities (how else could we come up with advances such as Mystery Science Theater 3000?), it also has limitations. The same adaptive capabilities that let us cope with information overload in both familiar and new ways also lead to some systematic flaws. And it led me to think about the ways in which we support these limitations, as they have implications for designing solutions for our organizations.

The first limit is at the sensory level. Our mind actually processes pretty much all the visual and auditory sensory data that arrives, but it disappears pretty quickly (within milliseconds) except for what we attend to. Basically, your brain fills in the rest (which leaves open the opportunity to make mistakes). What do we do? We’ve created tools that allow us to capture things accurately: cameras and microphones with audio recording. This allows us to capture the context exactly, not as our memory reconstructs it.

A second limitation is our ‘working’ memory. We can’t hold too much in mind at one time. We ‘chunk’ information together as we learn it, and can then hold more total information at one time. Also, the format of working memory largely is ‘verbal’. Consequently, using tools like diagramming, outlines, or mindmaps add structure to our knowledge and support our ability to work on it.

Another limitation to our working memory is that it doesn’t support complex calculations, with many intermediate steps. Consequently we need ways to deal with this. External representations (as above), such as recording intermediate steps, works, but we can also build tools that offload that process, such as calculators. Wizards, or interactive dialog tools, are another form of a calculator.

Processing information in short term memory can lead to it being retained in long term memory. Here the storage is almost unlimited in time and scope, but it is hard to get in there, and isn’t remembered exactly, but instead by meaning. Consequently, models are a better learning strategy than rote learning. But external sources like the ability to look up or search for information is far better than trying to get it in the head.

Similarly, external support for when we do have to do things by rote is a good idea. So, support for process is useful and the reason why checklists have been a ubiquitous and useful way to get more accurate execution.

In execution, we have a few flaws too. We’re heavily biased to solve new problems in the ways we’ve solved previous problems (even if that’s not the best approach. We’re also likely to use tools in familiar ways and miss new ways to use tools to solve problems. There are ways to prompt lateral thinking at appropriate times, and we can both make access to such support available, and even trigger same if we’ve contextual clues.

We’re also biased to prematurely converge on an answer (intuition) rather than seek to challenge our findings. Access to data and support for capturing and invoking alternative ways of thinking are more likely to prevent such mistakes.

Overall, our use of more formal logical thinking fatigues quickly. Scaffolding help like the above decreases the likelihood of a mistake and increases the likelihood of an optimal outcome.

When you look at performance gaps, you should look to such approaches first, and look to putting information in the head last. This more closely aligns our support efforts with how our brains really think, work, and learn. This isn’t a complete list, I’m sure, but it’s a useful beginning.

#DevLearn Schedule

24 October 2014 by Clark Leave a Comment

As usual, I will be at DevLearn (in Las Vegas) this next week, and welcome meeting up with you there.  There  is a lot going on.  Here’re the things I’m involved in:

  • On Tuesday, I’m running an all day workshop on eLearning Strategy. (Hint: it’s really a Revolutionize L&D  workshop  ;).  I’m pleasantly surprised at how many folks will be there!
  • On Wednesday at 1:15 (right after lunch), I’ll be speaking on the design approach  I’m leading  at the Wadhwani Foundation, where we’re trying to integrate learning science with pragmatic execution.  It’s at least partly a Serious eLearning Manifesto session.
  • On Wednesday at 2:45, I’ll be part of a panel on mlearning with my fellow mLearnCon advisory board members Robert Gadd, Sarah Gilbert, and Chad Udell, chaired by conference program director David Kelly.

Of course, there’s much more. A few things I’m looking forward to:

  • The  keynotes:
    •  Neil DeGrasse Tyson, a fave for his witty support  of science
    • Beau Lotto talking about perception
    • Belinda Parmar talking about women in tech (a burning issue right now)
  • DemoFest, all the great examples people are bringing
  • and, of course, the networking opportunities

DevLearn is probably my favorite conference of the year: learning focused, technologically advanced, well organized, and with the right people.  If you can’t make it this year, you might want to put it on your calendar for another!

Extending Mobile Models

21 October 2014 by Clark Leave a Comment

In preparation for a presentation, I was reviewing my mobile models. You may recall I started with my 4C‘s model (Content, Compute, Communicate, & Capture), and have mapped that further onto Augmenting Formal, Performance Support, Social, & Contextual.  I’ve refined it as well, separating out contextual and social as different ways of looking at formal and performance support.  And, of course, I’ve elaborated  it again, and wonder whether you think this more detailed conceptualization makes sense.

self and social mlearning contentSo, my starting point was realizing that it wasn’t just  content.  That is, there’s a difference between compute and content where the interactivity was an important part of the 4C’s, so that the characteristics in the content box weren’t discriminated enough.  So the new two initial sections are mlearning content and mlearning compute, by self or social.  So, we can be getting things for an individual, or it can be something that’s socially generated or socially enabled.

mLearningComputeThe point is that content is prepared media, whether text, audio, or video.  It can be delivered or accessed as needed. Compute, interactive capability, is harder, but potentially more valuable. Here, an individual might actively practice, have mixed initiative dialogs, or even work with others or tools to develop an outcome or update some existing shared resources.

mLearningCaptureThings get more complex when we go beyond these elements.  So I had capture as one thing, and I’m beginning to think it’s two: one is the capture of current context and keeping sharing that for various purposes, and the other is the system using that context  to do something unique.

To be clear here, capture is where you use the text insertion, microphone, or camera to catch unique contextual data (or user input).  It could also be other such data, such as a location, time, barometric pressure, temperature, or more. This data, then, is available to review, reflect on, or more.  It can be combinations, of course, e.g. a picture at this time and this location.

mLearningContextualNow, if the system  uses this information to do something different than under other circumstances, we’re contextualizing what we do. Whether it’s because of when you are, providing specific information, or where you are, using location characteristics, this is likely to be the most valuable opportunity.   Here I’m thinking alternate reality games or augmented reality (whether it’s voiceover, visual overlays, what have you).

And I  think  this is device independent, e.g. it could apply to watches or glasses or..as well as phones and tablets.  It means my 4 C’s become: content, compute, capture, and contextualize.  To ponder.

So, this is a more nuanced look at the mobile opportunities, and certainly more complex as well. Does the greater detail provide greater benefit?

 

 

Sharing pointedly or broadly

16 October 2014 by Clark 3 Comments

In a (rare) fit of tidying, I was moving from one note-taking app to another, and found a diagram I’d jotted, and it rekindled my thinking. The point was characterizing social media in terms of their particular mechanisms of distribution. I can’t fully recall what prompted the attempt at characterization, but one result of revisiting was thinking about the media in terms of whether they’re part of a natural mechanism of ‘show your work’ (ala Bozarth)/’work out loud’ (ala Jarche).

whether person to person or one to manyThe question revolves around whether the media are point or broadcast, that is whether you specify particular recipients (even in a mailing or group list), or whether it’s ‘out there’ for anyone to access.  Now, there are distinctions, so you can have restricted access on the ‘broadcast’ mode, but in principle there’re two different mechanisms at work.

It should be noted that in the ‘broadcast’ model, not everyone may be aware that there’s a new message, if they’re not ‘following’ the poster of the message, but it should be findable by search if not directly.  Also, the broadcast may only be an organizational network, or it can be the entire internet.  Regardless, there are differences between the two mechanisms.

So, for example, a chat tool typically lets you ping a particular person, or a set list. On the other hand, a microblog lets anyone decide to ‘follow’ your quick posts.   Not everyone will necessarily be paying attention to the ‘broadcast’, but they could.  Typically, microblogs (and chat) are for short messages, such as requests for help or pointers to something interesting.  The limitations mean that more lengthy  discussions typically are conveyed via…

Formats supporting unlimited text, including thoughtful reflections, updates on thinking, and more tend to be conveyed via email or blog posts. Again, email is addressed to a specific list of people, directly or via a mail list, openly or perhaps some folks receiving copies ‘blind’ (that is, not all know who all is receiving the message.  A blog post (like this), on the other hand, is open for anyone on the ‘system’.

The same holds true for other media files besides text.   Video and audio can be hidden in a particular place (e.g. a course) or sent directly to one person. On the other hand, such a message can be hosted on a portal (YouTube, iTunes) where anyone can see.  The dialog around a file provides a rich augmentation, just as such can be happening on a blog, or edited RTs of a microblog comment.

Finally, a slightly different twist is shown with documents.  Edited documents (e.g. papers, presentations, spreadsheets) can be created and sent, but there’s little opportunity for cooperative development.  Creating these in a richer way that allows for others to contribute requires a collaborative document (once known as a wiki).  One of my dreams is that we may have collaboratively developed interactives as well, though that still seems some way off.

The point for showing out loud is that point is only a way to get specific feedback, whereas a broadcast mechanism is really about the opportunity to get a more broad awareness and, potentially, feedback.  This leads to a broader shared understanding and continual improvement, two goals critical to organizational improvement.

Let me be the first to say that this isn’t necessarily an important, or even new, distinction, it’s just me practicing what I preach.  Also, I   recognize that the collaborative documents are fundamentally different, and I need to have a more differentiated way to look at these (pointers or ideas, anyone), but here’s my interim thinking.  What say you?

#itashare

Types of meaningful processing

14 October 2014 by Clark 1 Comment

In an previous post, I argued for different types and ratios for  worthwhile learning activities. I’ve been thinking about this (and working on it) quite a bit lately. I know there are other resources that I should know about (pointers welcome), but I’m currently wrestling with several types of situations and wanted to share my thinking. This is aside from scenarios/simulations (e.g. games) that are the first, best, learning practice you can engage in, of course. What I’m looking for is ways to get learners to do processing in ways that will assist their ability to  do.  This isn’t recitation, but application.

So one situation is where the learner has to execute  the right procedure. This seems easy, but the problem is that they’re liable to get it right  in practice.  The problem is that they still can get it wrong when in real situations. An idea I had heard of before, but was reiterated through Socratic Arts  (Roger Schank & cohorts) was to have learners observe (e.g. video) of someone performing it and identifying whether it was right or not. This is a more challenging task than  just doing it right for many routine but important tasks (e.g. sanitation). It has learners monitor the process, and then they can turn that on themselves to become self-monitoring.  If the selection of mistakes is broad enough, they’ll have experience that will transfer to their whole performance.

Another task that I faced earlier was the situation where people had to interpret guidelines to make a decision. Typically, the extreme cases  are obvious, and instructors argue that they all are, but in reality there are many ambiguous situations.  Here, as I’ve argued before, the thing to do is have folks work in groups and be presented with increasingly ambiguous situations. What emerges from the discussion is usually a rich unpacking of the elements.  This processing of the rules in context exposes the underlying issues in important ways.

Another type of task is helping people understand applying models to make decisions. Rather than present them with the models, I’m again looking for more meaningful processing.  Eventually I’ll expect learners to make decisions with them, but as a scaffolding step, I’m asking them to interpret the models in terms of their recommendations for use.  So before I have them engage in scenarios, I’ll ask them to use the models to create, say, a guide to how to use that information. To diagnose, to remedy, to put in place initial protections.  At other times, I’ll have them derive subsequent processes from the theoretical model.

One other example I recall came from a paper  that Tom Reeves wrote (and I can’t find) where he had learners pick from a number of options that indicated problems or actions to take. The interesting difference was then there was a followup question about why. Every choice was two stages: decision and then rationale. This is a very clever way to see if they’re not just getting the right answer but can understand why it’s right.  I wonder if any of the authoring tools on the market right now include such a template!

I know there are  more categories of learning and associated tasks that require useful processing (towards do, not  know, mind you ;), but here are a couple that are ‘top of mind’ right now. Thoughts?

 

 

The resurgence of games?

8 October 2014 by Clark Leave a Comment

I talked yesterday about how some concepts may not resonate immediately, and need to continue to be raised until the context is right.  There I was talking about explorability and my own experience with service science, but it occurred to me that the same may be true of games.

Now, I’ve been pushing games as a vehicle for learning for a long time, well before my book came out on the topic.  I strongly believe that next to mentored live practice (which doesn’t scale well), (serious) games are the next best learning opportunity.  The reasons are strong:

  • safe practice: learners can make mistakes without real consequences (tho’ world-based ones can play out)
  • contextualized practice (and feedback): learning works better in context rather than on abstract problems
  • sufficient practice: a game engine can give essentially infinite replay
  • adaptive practice: the game can get more difficult to develop the learner to the necessary level
  • meaningful practice: we can choose the world and story to be relevant and interesting to learners

the list goes on.  Pretty much all the principles of the Serious eLearning Manifesto are addressed in games.

Now, I and others (Gee, Aldrich, Shaffer, again the list goes on) have touted this for years.  Yet we haven’t seen as much progress as we could and should.  It seemed like there was a resurgence around 2009-2010, but then it seemed to go quiet again. And now, with Karl Kapp’s Gamification book and the rise of interest in gamification, we have yet another wave of interest.

Now, I’m not a fan of the extrinsic  gamification, but it appears there’s a growing awareness of the difference  between extrinsic and intrinsic. And I’m seeing more use of games to develop understanding in at least K12 circles.  Hopefully, the awareness will arise in higher ed and corp too.

As some fear, it’s too costly, but my response is twofold:

  • games aren’t as expensive as you fear; there are lots of opportunities for games in lower price ranges (e.g. $100K), don’t buy into the $1M and up mentality
  • they’re actually likely to be effective (as part of a complete learning experience), compared to many if not most of the things being done in learning

So I hope we might finally go beyond Clicky Clicky Bling Bling, (tarted quiz shows, cheesy videos and more) and get to interaction that actually leads to change.  Here’s hoping!

Service Thinking and the Revolution?

7 October 2014 by Clark Leave a Comment

A colleague I greatly respect, who has a track record of high impact in important positions, has been a proponent of service science.  And I confess that it hadn’t really penetrated.  Yet last week I heard about it in a way that resonated much more strongly and got me thinking, so let me share where it’s leading my thinking, and see what you say.

One time I heard something exciting, a concept called interface ‘explorability‘ when I was doing a summer internship at NASA while a grad student.  When I brought it back to the lab, my advisor didn’t really resonate.  Then, some time later (a year or two)  he was discussing a concept and I mentioned that it sounded a lot like that ‘explorability’, and he suddenly wanted to know more. The point being that there is a time when you’re ready to hear a message. And that’s me with service science.

The concept is considering a mutual value generation process between provider and customer, and engineering it across the necessary system components and modular integrations to yield a successful solution.  As organizations need to be more customer-centric, this perspective yields processes to do that in a very manageable, measurable way.  And that’s the perspective I’d been missing when I’d previously heard about it, but Hastings  & Saperstein presented it last  week at the Future of Talent event in the form of Service Thinking, which brought the concept home.

I wondered how it compared to Design Thinking, another concept sweeping instructional design and related fields, and it appears to be synergistic but perhaps a superset. While nothing precludes Design Thinking from producing the type of outcome Service Thinking is advocating, I’m inferring that Service Thinking is a bit more systematic and higher level.

The interesting idea for me was to think of bringing Service Thinking to the role of L&D in the organization. If we’re looking systematically at how we can bring value to the customer, in this case the organization, systematically, we have a chance to look at the bigger picture, the Performance & Development view instead of the training view.  If we take the perspective of an integrated approach to meeting organizational execution and innovation needs, we may naturally develop the performance ecosystem.

We need to take a more comprehensive approach, where we integrate technology capabilities, resources, and people into an integrated whole. I’m looking at service thinking, as perhaps an integration of the rigor of systems thinking with the creative customer focus of design thinking, as at least another way to get us there.  Thoughts?

Next Page »

Clark Quinn

The Company

Search

Feedblitz (email) signup

Never miss a post
Your email address:*
Please wait...
Please enter all required fields Click to hide
Correct invalid entries Click to hide

Pages

  • About Learnlets and Quinnovation

The Serious eLearning Manifesto

Manifesto badge

Categories

  • design
  • games
  • meta-learning
  • mindmap
  • mobile
  • social
  • strategy
  • technology
  • Uncategorized
  • virtual worlds

License

Previous Posts

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013
  • July 2013
  • June 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011
  • November 2011
  • October 2011
  • September 2011
  • August 2011
  • July 2011
  • June 2011
  • May 2011
  • April 2011
  • March 2011
  • February 2011
  • January 2011
  • December 2010
  • November 2010
  • October 2010
  • September 2010
  • August 2010
  • July 2010
  • June 2010
  • May 2010
  • April 2010
  • March 2010
  • February 2010
  • January 2010
  • December 2009
  • November 2009
  • October 2009
  • September 2009
  • August 2009
  • July 2009
  • June 2009
  • May 2009
  • April 2009
  • March 2009
  • February 2009
  • January 2009
  • December 2008
  • November 2008
  • October 2008
  • September 2008
  • August 2008
  • July 2008
  • June 2008
  • May 2008
  • April 2008
  • March 2008
  • February 2008
  • January 2008
  • December 2007
  • November 2007
  • October 2007
  • September 2007
  • August 2007
  • July 2007
  • June 2007
  • May 2007
  • April 2007
  • March 2007
  • February 2007
  • January 2007
  • December 2006
  • November 2006
  • October 2006
  • September 2006
  • August 2006
  • July 2006
  • June 2006
  • May 2006
  • April 2006
  • March 2006
  • February 2006
  • January 2006

Amazon Affiliate

Required to announce that, as an Amazon Associate, I earn from qualifying purchases. Mostly book links. Full disclosure.

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok